

Available online at www.sciencedirect.com

JOURNAL OF SOLID STATE CHEMISTRY

Journal of Solid State Chemistry 180 (2007) 3381-3387

www.elsevier.com/locate/jssc

Synthesis, structure and X-ray excited luminescence of Ce^{3+} -doped AREP₂O₇-type alkali rare earth diphosphates (A = Na, K, Rb, Cs; RE = Y, Lu)

Jun-Lin Yuan^{a,b}, Hui Zhang^a, Hao-Hong Chen^a, Xin-Xin Yang^a, Jing-Tai Zhao^{a,*}, Mu Gu^c

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China ^bGraduate School of Chinese Academy of Sciences, Beijing, PR China ^cTongji University, Shanghai 200020, PR China

Received 2 June 2007; received in revised form 4 September 2007; accepted 6 September 2007 Available online 26 September 2007

Abstract

The crystal structures of five new alkali rare earth diphosphates were obtained by Rietveld refinement of powder X-ray diffraction (XRD) profiles, including four alkali lutetium diphosphates $ALuP_2O_7$ (A = Na, K, Rb, Cs) and the low temperature phase of KYP_2O_7 . The scintillation properties of Ce^{3+} -doped $AREP_2O_7$ (A = Na, K, Rb, Cs; RE = Y, Lu) powder samples were studied under static and pulsed X-ray excitations, and featured outstanding scintillation properties with light yields 1–2 times of that of $Bi_4(GeO_4)_3$ and relatively short decay time of 20–28 ns. Considering the suitable emission wavelength range, large light yield, short decay time, and non-hygroscopic nature, Ce^{3+} -doped $AREP_2O_7$ -type alkali rare earth diphosphates are potential candidates for high-counting-rate scintillation applications.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Alkali rare earth diphosphates; Rietveld refinement; X-excited luminescence

1. Introduction

Recently, investigation of the synthesis and characterization of alkali rare earth phosphates has gained much attention due to their potential applications in diverse areas such as X-ray and gamma-radiation scintillators [1,2], lighting, display phosphors [3], solid-state lasers [4], catalysts and ion conductors [5]. AREP₂O₇ (A = alkali, RE = rare earth) type alkali rare earth diphosphate is an important member in the A_2O -RE₂O₃-P₂O₅ ternary system, of which previously the major attention was concentrated on structural investigations. Among the numerous diphosphates $A^{\rm I}M^{\rm III}P_2O_7$ (A = alkali, Ag, Tl; M = Al, Ga, RE, transition metal), at least 8 structural types have been reported [5,6]. For alkali rare earth diphosphates AREP₂O₇ with large A⁺ and small RE³⁺(r_A/r_M =1.51–2.73), the structure type

*Corresponding author. Fax: +8602152413122.

E-mail address: jtzhao@mail.sic.ac.cn (J.-T. Zhao).

corresponds to the KAlP₂O₇ type with S. G. of $P2_1/c$ (No.14) and Z equals 4 in each unit cell. As for smaller alkali ion (such as Li⁺ and Na⁺) with smaller r_A/r_M ratio, several other structural types were identified: $LiScP_2O_7$ in $P2_1$ (No. 14) with Z=2 [5], NaYP₂O₇ in P2₁ (No. 4) with Z=4 [7], NaYbP₂O₇ in $P2_1/n$ (No. 14) with Z = 4 [8], and NaLnP₂O₇ (Ln = La - Ce) in *P*nma (No. 62) with Z = 4 [9]. However, alkali rare earth diphosphates with r_A/r_M ratio near the lower limit (1.51) always show transitional structure types, for example, KYP₂O₇ crystals grown from high temperature melt show S. G. of Cmcm (No. 63) with Z = 4 [10]. Nevertheless, since the $r_{\rm K}^+/r_{\rm Y}^{3+}$ ratio (1.68) is in the range of 1.51–2.73 mentioned above, KYP₂O₇ should have a low temperature phase of KAlP₂O₇-type structure. In this work, the low temperature phase of KYP2O7 was obtained at a lower temperature. For convenience, the high temperature phase and low temperature phase were titled as α -KYP₂O₇ and β -KYP₂O₇, respectively. Besides, the four alkali lutetium diphosphates $ALuP_2O_7$ (A = Na-Cs) is first reported here

^{0022-4596/\$ -} see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2007.09.021

and their structures were obtained via powder XRD Rietveld refinement. It was found that β -KYP₂O₇ and ALuP₂O₇ (A = K-Cs) features the KAlP₂O₇-type structure, and NaLuP₂O₇ is isostructural with NaYbP₂O₇.

Due to the wide band gap and the suitability for doping with rare earth activators, the luminescent properties of alkali rare earth phosphates under VUV and X-ray radiation were widely reported in the last several years, though most of the studies were concentrated on the $A_3RE(PO_4)_2$ -type alkali rare earth phosphates. For example, $Na_3RE(PO_4)_2$, $K_3Lu(PO_4)_2$, $Rb_3Lu(PO_4)_2$, and $Cs_3Lu(PO_4)_2$, among which Ce^{3+} -doped $A_3Lu(PO_4)_2$ (A = K, Rb, Cs) were identified as promising fast scintillators [1]. However, A₃RE(PO₄)₂-type alkali rare earth phosphates are hygroscopic, which restricts their applications. As a comparison, AREP₂O₇ are non-hygroscopic since alkali ions are safely encaged by [REO₆] and $[P_2O_7]$ groups. Nevertheless, the optical investigations of the AREP₂O₇-type alkali rare earth diphosphates remain insufficient, though Jouini et al. [2] studied the X-ray excited luminescence (XEL) of NaPrP₂O₇, and Li et al. [11] reported the XEL of Ce^{3+} -doped $NH_4LuP_2O_7$. We have studied the VUV-UV excited luminescent properties of Ce^{3+} , Pr^{3+} -doped AREP₂O₇ (A = Na, K, Rb, Cs; RE = Y, Lu) [12] and Ln³⁺-doped NaREP₂O₇ (Ln = Ce, Pr, Tb, Eu, Tm; RE = La, Gd). In this work, the luminescent spectra of Ce^{3+} -doped α -KYP₂O₇, AYP₂O₇ (A = Rb, Cs) and $ALuP_2O_7$ (A = Na, K, Rb, Cs) under static hard X-ray radiation were presented, and their decay profiles under pulsed hard X-ray radiation were also presented. The series of Ce³⁺-doped AREP₂O₇ alkali rare earth diphosphates features high light yield and fast decay time, which might be potential candidates as fast scintillators [13].

2. Experimental sections

2.1. Sample preparation

Powder samples of NaLuP₂O₇, α -KYP₂O₇, β -KYP₂O₇, KLuP₂O₇, RbYP₂O₇, RbLuP₂O₇, CsYP₂O₇ and CsLuP₂O₇ were prepared by solid-state reactions. Analytical grade

reagents, Na₂CO₃, KNO₃, RbNO₃, Cs₂CO₃, Y₂O₃, Lu₂O₃, CeO₂, Pr₆O₁₁ and (NH₄)₂HPO₄, were weighed stoichiometrically, mixed thoroughly in agate mortar, pre-calcined at 400 °C for 1 h in covered alumina crucibles, then reground and subsequently calcined at 750 °C (650 °C for β -KYP₂O₇) for 24 h in covered alumina crucibles. However, when trying to obtain NaYP₂O₇ from solid-state reactions, YPO₄ and NaPO₃ glass were obtained instead. For Ce³⁺-doped samples, the doping concentration was 0.5 mol% and the samples were heat treated in mild reducing atmosphere of CO. All of the samples are purely white and nonhygroscopic.

2.2. X-ray diffraction (XRD) analysis

The powder XRD data for phase identification was collected at ambient temperature with a Rigaku D/max2500 diffractometer (CuKa radiation, 40 kV/200 mA). The XRD patterns of NaLuP₂O₇ and three yttrium compounds, α-KYP₂O₇, RbYP₂O₇ and CsYP₂O₇, match well with the patterns reported in ICDD database (Card No. 41-0418, 49-1161, 49-0122) or calculated from ICSD database. The powder XRD data used for Rietveld refinement were collected with Model X'Pert PRO (PANalytical, Holland, CuKal 1.54056 Å, X' Celerator Detector) operated at 40 kV and 40 mA (step size of 0.017° and count-time of 2 s/step). In the Rietveld refinement, the atomic positions of NaYbP₂O₇ [8] were used as the starting model for NaLuP₂O₇, KAlP₂O₇ [14] for β -KYP₂O₇ and KLuP₂O₇, and RbYP₂O₇ [15] for RbLuP₂O₇ and CsLuP₂O₇, among which NaYbP₂O₇ is in S. G. of $P2_1/n$ (No. 14) with Z = 4, and the other diphosphates included here are in S. G. of $P2_1/c$ (No. 14) with Z = 4.

2.3. Optical measurements

The XEL spectra were measured on an X-ray excited spectrometer, FluoMain, where a F-30 movable clinical X-ray tube (W anticathode target) was used as the X-ray source, and operated under the same conditions (30 kV, 4 mV) at room temperature. The XEL spectra of the samples were obtained by 44 W plate grating monochromator

Table 1

Unit cell parameters and <i>R</i> -factors of ALuP ₂ O ₇ and β -KYP ₂ O	D ₇ obtained from Rietveld refinement of powder XRD data
--	---

Compound	NaLuP ₂ O ₇	β -KYP ₂ O ₇	KLuP ₂ O ₇	RbLuP ₂ O ₇	CsLuP ₂ O ₇
S. G., Z	$P2_1/n, 4$	$P2_1/c, 4$	$P2_1/c, 4$	$P2_1/c, 4$	$P2_1/c, 4$
a (Å)	9.0277(1)	7.5797(2)	7.5490(1)	7.6797(1)	7.8768(1)
b (Å)	5.3629(1)	10.9371(3)	10.7847(1)	10.7785(1)	10.7282(1)
c (Å)	12.7710(1)	8.5918(2)	8.5394(1)	8.6061(1)	8.7036(1)
β (°)	103.36(0)	106.92(0)	106.69(0)	105.37(0)	104.36(0)
$V(Å^3)$	601.57(9)	681.44(29)	665.92(16)	686.88(13)	712.51(16)
$\rho_{\rm cal}(\rm g \rm cm^{-3})$	4.11	2.94	3.87	4.20	4.49
$R_{\rm p}(\%)$	4.85	6.21	5.15	4.14	4.67
$R_{wp}(\%)$	6.84	9.00	7.57	5.65	6.25
$R_{\rm exp}(\%)$	2.55	5.82	2.62	2.16	3.13

and Hamamatsu R928-28 PMT with the data acquired by computer. The fluorescence lifetimes were measured by exciting the samples with pulsed X-ray (maximal excited

Fig. 1. Observed (dots), calculated (solid line) and difference XRD patterns of $NaLuP_2O_7$. The second row of Brag positions belongs to the second phase LuPO₄ with content of 2.7 wt%.

energy 30 keV) and detected by a S-1 photomultiplier tube. The time resolution of the X-ray excited fluorescence lifetime is 0.97 ns. All of the measurements were carried out under room temperature.

3. Results and discussion

3.1. Structural aspects

Structural refinements were carried out using *FullProf* [16], from which the unit cell parameters and *R*-factors were tabulated in Table 1. The observed, calculated and difference powder XRD patterns of the five AREP₂O₇ diphosphates were presented in Figs. 1 and 2, and the atomic positions were tabulated in Tables 2–4. As shown in Figs. 1 and 2, a small amount of second phase of LuPO₄ was found in the NaLuP₂O₇ sample, and Lu₂O₃ second phase in the KLuP₂O₇ and CsLuP₂O₇ samples. The correctness of the refinement is indicated by checking the atom distances, from which the P–O distances are in range of 1.457–1.642 Å and the average P–O distances are in the range of 1.522–1.545 Å that are close to 1.54 Å for P–O

Fig. 2. The observed (dot), calculated (solid line) and difference XRD patterns of β -KYP₂O₇, KLuP₂O₇, RbLuP₂O₇ and CsLuP₂O₇. The second row of Brag positions belongs to the second phase of Lu₂O₃ with content of 1.0 and 1.4 wt% in the samples of KLuP₂O₇ and CsLuP₂O₇, respectively.

Table 2 Atomic parameters of NaLuP_2O_7 obtained from Rietveld refinement

Atom	x/a	y/b	z/c	$U_{\rm iso}$ (Å ²)
Nal	0.6378(8)	0.228(3)	0.1920(6)	0.027(3)
Lul	0.77057(14)	0.7629(4)	0.02406(9)	0.0086(2)
P1	0.9739(6)	0.251(3)	0.1535(4)	0.0104(17)
P2	0.5670(7)	0.285(2)	0.8816(5)	0.015(2)
01	0.0614(13)	0.272(5)	0.0668(10)	0.013(4)
O2	0.896(2)	-0.001(4)	0.1622(14)	0.008(6)
O3	0.8635(20)	0.466(4)	0.1491(14)	0.012(6)
O4	0.1009(11)	0.269(4)	0.2679(9)	0.011(4)
O5	0.6771(14)	0.123(2)	0.9531(12)	0.009(5)
O6	0.4066(13)	0.212(4)	0.8754(8)	0.007(5)
O7	0.5992(16)	0.544(3)	0.9092(12)	0.017(5)

Table 3

Atomic parameters of β -KYP₂O₇ and KLuP₂O₇ obtained from Rietveld refinement

Atom	x/a	y/b	z/c	$U_{\rm iso}[{\rm \AA}^2]$
β-KYP ₂ O	7			
K1	0.1872(5)	0.3216(3)	0.0687(4)	0.0239(11)
Y1	0.2313(2)	0.59522(14)	0.7488(2)	0.0081(3)
P1	0.4479(6)	0.6442(4)	0.1907(6)	0.0116(13)
P2	0.1296(6)	0.8996(4)	0.8066(5)	0.0086(12)
01	0.3418(11)	0.9206(8)	0.8071(10)	0.021(3)
O2	0.0668(11)	0.7287(9)	0.2387(12)	0.007(3)
O3	0.6305(10)	0.5882(9)	0.2471(11)	0.013(3)
O4	0.1237(13)	0.5964(9)	0.4732(12)	0.020(3)
O5	0.3385(12)	0.6137(8)	0.0185(12)	0.020(3)
O6	1.0158(12)	0.4992(9)	0.2089(9)	0.006(3)
O 7	0.4635(11)	0.7777(9)	0.2254(10)	0.004(3)
KLuP ₂ O ₇				
K1	0.1822(7)	0.3217(4)	0.0653(7)	0.0287(18)
Lul	0.23255(20)	0.59734(10)	0.7523(2)	0.0095(2)
P1	0.4466(9)	0.6437(6)	0.1915(9)	0.013(2)
P2	0.1316(8)	0.8987(7)	0.8129(8)	0.0128(19)
01	0.3418(17)	0.9309(13)	0.8060(17)	0.032(5)
O2	0.0679(19)	0.7350(14)	0.238(2)	0.010(5)
O3	0.6387(14)	0.5893(14)	0.2438(16)	0.013(4)
O4	0.1360(19)	0.5979(14)	0.4855(20)	0.014(5)
O5	0.3313(19)	0.6127(14)	0.0135(19)	0.014(5)
O6	1.0154(19)	0.5009(13)	0.2178(16)	0.020(5)
07	0.460(2)	0.7773(14)	0.2324(19)	0.017(5)

[17]. The A–O distances and RE–O distances in the [REO₆] octahedra are normal as well.

NaLuP₂O₇ is not isostructural with the other KAlP₂O₇-type diphosphates. As shown in Fig. 3a, Na⁺ ions locate at a tunnel along the *c*-axis formed by stacking hexagonal rings of $[Lu_2P_4O_{22}]$. Further analysis indicates that Na⁺ ions are encaged in the cage constructed by three hexagonal rings (Fig. 4a). As previously reported in the VUV–UV spectroscopic properties of Ce³⁺-doped AREP₂O₇, the very low value of Stokes shift of Ce³⁺ in NaLuP₂O₇ indicates a very stiffness nature of the cage in NaLuP₂O₇ [12]. Besides, the Na–O distance the cage is relatively small comparing with the known fast Na⁺

Table 4
Atomic parameters of RbLuP2O7 and CsLuP2O7 obtained from Rietveld
refinement

Atom	x/a	y/b	z/c	$U_{\rm iso}[{\rm \AA}^2]$
RbLuP ₂	O ₇			
Rb	0.1911(3)	0.31718(18)	0.0591(3)	0.0187(6)
Lul	0.23437(16)	0.59868(10)	0.75287(17)	0.0035(2)
P1	0.4390(8)	0.6369(6)	0.1876(7)	0.0129(19)
P2	0.1323(7)	0.8992(6)	0.8162(6)	0.0049(15)
01	0.3284(14)	0.9331(11)	0.8012(12)	0.017(4)
O2	0.0753(15)	0.7266(11)	0.2559(14)	0.007(4)
O3	0.6208(13)	0.5756(11)	0.2313(13)	0.005(4)
O4	0.1488(17)	0.5900(12)	0.4934(15)	0.019(5)
O5	0.3376(15)	0.6115(11)	0.0176(13)	0.007(4)
O6	0.9935(14)	0.4978(10)	0.2230(12)	0.007(4)
O 7	0.4498(15)	0.7741(11)	0.2320(12)	0.007(4)
CsLuP ₂	D ₇			
Cs1	0.1986(3)	0.30410(16)	0.0487(2)	0.0158(6)
Lul	0.23645(20)	0.59984(15)	0.7547(2)	0.0006(3)
P1	0.4257(12)	0.6297(9)	0.1832(11)	0.032(3)
P2	0.1324(10)	0.9034(9)	0.8206(9)	0.013(2)
01	0.3237(19)	0.9426(13)	0.7929(17)	0.011(5)
O2	0.0748(19)	0.7287(14)	0.2628(17)	0.007(6)
O3	0.6090(19)	0.5723(14)	0.2346(16)	0.014(6)
O4	0.156(2)	0.5825(15)	0.4938(17)	0.010(6)
O5	0.337(2)	0.6029(17)	0.0157(18)	0.024(6)
O6	0.999(2)	0.5046(15)	0.2294(17)	0.021(6)
O 7	0.4435(19)	0.7605(14)	0.2242(18)	0.008(6)

conductors [18]. Hence Na^+ ions are confined in the stiff cage and fast ion conduction is not expected.

As for the KAlP₂O₇-type diphosphates that constitute the largest structure type in the $A^{I}M^{III}P_{2}O_{7}$ ternary system, the basic building block is the tunnel structure formed by septangular rings stacking along the *c*-axis (Figs. 4b and c). The structure of stacking rings in KAlP₂O₇-type diphosphates is validated in the Ce³⁺-doped UV excited luminescent spectra. Since Stokes shift of Ce³⁺ is an indicator of the stiffness of host lattice, in KAlP₂O₇-type diphosphates the larger A⁺ and smaller RE³⁺ would brought out smaller Stokes shift [12], indicating the more rigid nature of the KAlP₂O₇-type host lattice.

3.2. X-ray excited luminescence of Ce^{3+} -doped $AREP_2O_7$

In the previous paper [12], the VUV spectroscopic properties of AREP₂O₇:Ce³⁺ were reported and an efficient host \rightarrow Ce³⁺ energy transfer was identified, which is crucial for a large light yield of scintillators [19]. The XEL spectra of AREP₂O₇:0.5% Ce³⁺ (A = Na, K, Rb, Cs; RE = Y, Lu) powder samples were presented in Fig. 5. Under the excitation of hard X-ray photons, all of the samples show strong emissions in the range of 325–450 nm, which originates from the parity allowed Ce³⁺ $5d \rightarrow 4f(^2F_{5/2}, ^2F_{7/2})$ radiative transition. The high similarity in the emission spectra of the series of AREP₂O₇:ce sample could be noted that the observed emission in NaLuP₂O₇:Ce sample could

Fig. 3. (a) Perspective view along [010] direction of the crystal structure of NaLuP₂O₇, and (b) perspective view along [001] direction of the crystal structure of β -KYP₂O₇, KLuP₂O₇, RbLuP₂O₇ and CsLuP₂O₇ that are isostructural with KAlP₂O₇.

Fig. 4. (a) In NaLuP₂O₇, Na⁺ ion is encaged in the cage formed by three hexagonal rings of [Lu₂P₄O₂₂]. (b) Side view of the tunnel in the KAlP₂O₇-type diphosphates, β -KYP₂O₇, ALuP₂O₇ (A = K, Rb, Lu). (c) The top view of the septangular ring of [RE₃P₄O₂₇] (RE = Y, Lu) that stacks along *c*-axis to form the tunnel in KAlP₂O₇-type diphosphates.

Fig. 5. X-ray excited luminescence (XEL) of Ce^{3+} -doped AREP₂O₇ (0.5 mol%) powder samples at room temperature. The XEL emission spectrum of Bi₄Ge₃O₁₂ (BGO) powder sample was given as a reference. All of the samples are measured under the same conditions.

not be attributed to the small amount of $LuPO_4$:Ce parasite phase since the observed emission peaks at 370 nm whereas the emission of $LuPO_4$:Ce peaks at

360 nm instead [20]. However, comparing with the VUVexcited emission spectra the X-ray excited Ce^{3+} emission features slight redshift due to a greater percentage of emission from $5d \rightarrow 4f({}^{2}F_{7/2})$ transition. The emission location in the UV/blue range matches well with commercial photomultiplier tubes and avalanche photodiodes, which makes AREP₂O₇:Ce³⁺ advantageous in scintillation applications. Though large single crystals are required in the measurement of scintillation light yield, a rough estimation of light yield could be made from the XEL spectra by comparing the photomultiplier tube outputs with that of a well established scintillator, Bi₄(GeO₄)₃ (BGO) [21]. The powder sample of BGO used here was obtained by careful grinding large pieces of BGO single crystals in an agate mortar. By integrating the emission curves presented in Fig. 5, the light yield of ARE-P₂O₇:0.5% Ce³⁺ was estimated to be 75–200% of that of

BGO (seen in Table 5). Generally, the lutetium-containing samples show larger light yield than their yttrium-containing counterparts due to the larger absorption of X-ray by lutetium atoms. Overall, the obtained values were a little smaller than that of LuPO₄ [20] and $A_3Lu(PO_4)_2$ measured using high quality crystals [1]. Nevertheless, current values would be underestimated since the samples are not single crystals and their X-ray absorption coefficients are smaller relative to that of BGO. The concentration quenching effect appears when the doping concentration exceeds 0.5%, indicating fast energy migration among Ce³⁺ activators.

In Fig. 6, the scintillation pulse shapes of $AREP_2O_7$: Ce^{3+} powder samples were presented, together with their

Table 5

Comparison of several scintillation properties between some commercially available scintillators and AREP2O7:Ce (0.5 mol%) samples

	Emission max (nm)	Relative light yield $(NaI:Tl = 100)^{a}$	Decay time (ns) ^b	$\rho_{\rm cal}~({\rm g/cm}^3)$	Hygroscopic
NaI:Tl	415	100	230	3.67	Yes
Bi ₄ Ge ₃ O ₁₂	480	10	300	7.13	No
PbWO ₄	420/450	0.3	6/15	8.3	No
Lu ₂ SiO ₅ :Ce	420	75	40	7.4	No
Gd ₂ SiO ₅ :Ce	430	20	60	6.71	No
NaLuP ₂ O ₇ :Ce	370	7.5	5.5(17.7%)/20.4(82.3%)	4.11	No
KYP ₂ O ₇ :Ce	380	12.5	6.7(22.6%)/23.2(77.4%)	3.11	No
KLuP ₂ O ₇ :Ce	394	20	6.3(14.9%)/27.2(85.1%)	3.87	No
RbYP ₂ O ₇ :Ce	393	8.8	8.8(14.8%)/27.8(85.2%)	3.27	No
RbLuP ₂ O ₇ :Ce	393	16	6.3(23.2%)/24.0(76.8%)	4.20	No
CsYP ₂ O ₇ :Ce	383	10	5.2(16.9%)/22.2(83.1%)	3.57	No
CsLuP ₂ O ₇ :Ce	383	10	4.4(14.1%)/19.8(85.9%)	4.49	No

^aThe relative light yields of AREP₂O₇:Ce are calculated according to that of BGO, which is about 10% of NaI:Tl.

^bThe percentage in parentheses is the intensity percentage of the fast/slow emission component.

Fig. 6. Room temperature scintillation pulse shapes of Ce^{3+} -doped AREP₂O₇ (0.5 mol%) powder samples. Two-exponential decay fits curves were also presented (solid line). The curves have been lifted vertically for clarity. The scintillation pulse of β -KYP₂O₇:Ce³⁺ was not presented due to its very low light yield comparing with the other seven diphosphates.

3387

two-exponential decay fit curves. A two-exponential decay fit was required for a reliable reconstruction of all of the experimental data. The decay times (τ_1, τ_2) and relative intensity (I_1, I_2) of both slow and fast component were listed in Table 5. As shown in Table 5, the AREP₂O₇:Ce³⁺ powder samples feature a fast decay component with decay time of 4-9 ns and a slower decay component with decay time of 20–28 ns, which would be valuable in high counting rate scintillation applications. It should be pointed out that the scintillation pulse shape parameters were calculated assuming the absence of slower decay component, and it cannot be excluded that weak slow emission components would hide in the measurement background. The high similarity in both decay time and relative intensity of the slow and fast components in each sample again demonstrates their structural and compositional resemblance and suggests the same scintillation mechanism in the series of $\overrightarrow{AREP_2O_7:Ce^{3+}}$ samples.

For typical Ce³⁺-activated scintillators where different exponential decay components not only arise from multipositions of Ce³⁺ activators but also from other factors, such as charge carrier trapping, host emission and nonradiative process. For "ideal" Ce3+ ion that is free from any energy loss, the parity-allowed 5d-4f transition follows single-exponential decay mode with decay time τ_r that directly relates to the emission wavelength λ . $\tau_{\rm r} = 1.35 \times 10^5 \lambda^2 [n(n^2+2)^2 f]^{-1}$, where *n* is refractive index and f is oscillator strength [1,22]. By applying the data $(n=1.7, f=13.1 \times 10^{-3})$ suggested by Lempicki and Wojtowicz [22], the theoretical decay time of $AREP_2O_7:Ce^{3+}$ is estimated to be within 35–40 ns, which is apparently longer than the observed decay time in Table 5. The shortening of decay time in AREP₂O₇:Ce³⁺ system probably originates from considerable energy loss to non-radiative centers [23], for example grain boundaries and residual Ce⁴⁺ centers. The non-radiative energy loss would lead to a notable reduction in light yield, as demonstrated in the low light yield of β -KYP₂O₇:Ce sample that was not completely reduced (Fig. 5). Nevertheless, this type of defect-induced decay time shortening would be valuable in cases where fast decay is more important than light yield. Higher light yield and longer decay time are expected if large pieces of high quality single crystals are fabricated.

In the end, some scintillation properties of ARE-P₂O₇:Ce³⁺ are compared with that of several established inorganic scintillators (Table 5). As shown in Table 5, AREP₂O₇:Ce³⁺ show promising scintillation properties, especially for KLuP₂O₇:Ce³⁺ and RbLuP₂O₇:Ce³⁺. Though the densities are relatively low, considering their short decay time, high light yield and non-hygroscopic nature, these materials would be potential candidates in scintillation applications under not too high-energy radiation.

4. Conclusion

In this work, the crystal structure data of five AREP₂O₇type alkali rare earth diphosphates were obtained from Rietveld refinement of powder XRD patterns, including the NaYbP₂O₇-type NaLuP₂O₇ ($P2_1/n$, Z = 4) and four KAlP₂O₇-type β -KYP₂O₇ and ALuP₂O₇ (A = K, Rb, Cs) ($P2_1/c$, Z = 4). By doping with Ce³⁺ activators, the series of AREP₂O₇:Ce³⁺ samples show strong emission in the UV-blue region with high light yields (1–2 times of BGO) and short decay times (20–28 ns), which would be promising in high-counting rate scintillation applications under not too high energy radiation. The relatively short decay time probably originates from defect-induced non-radiative deactivation of Ce³⁺ ions.

Acknowledgments

This work was supported by the Key Project (50332050) from the NNSF of China and the 100 Talents Program from the Chinese Academy of Sciences and fund for Young Leading Researchers from Shanghai municipal government. We also thank Prof. Liang Fang for his kindly help in collecting XRD patterns for Rietveld refinement.

Reference

- D. Wisniewski, A.J. Wojtowicz, W. Drozdowski, J.M. Farmer, L.A. Boatner, Cryst. Res. Technol. 38 (2003) 275.
- [2] A. Jouini, J.C. Gâcon, M. Ferid, M. Trabelsi-Ayadi, Opt. Mater. 24 (2003) 175.
- [3] J.L. Yuan, J. Wang, D.B. Xiong, J.T. Zhao, Y.B. Fu, G.B. Zhang, C.S. Shi, J. Lumin. 126 (2007) 717.
- [4] J.J. Carvajal, I. Parreu, R. Sole, X. Solans, F. Diaz, M. Aguilo, Chem. Mater. 17 (2005) 6746.
- [5] G. Vitins, Z. Kanepe, A. Vitins, J. Ronis, A. Dindune, A. Lusis, J. Solid State Electrochem. 4 (2000) 146.
- [6] N. Khay, A. Ennaciri, M. Harcharras, Vib. Spectrosc. 27 (2001) 119.
- [7] A. Hamady, T. Jouini, Acta Crystallogr. C 52 (1996) 2949.
- [8] M. Ferid, K. Horchani-Naifer, M. Trabelsi-Ayedi, Z. Kristallogr. NCS 219 (2004) 353.
- [9] K. Horchani-Naifer, M. Ferid, Solid State Ionics 176 (2005) 1949.
- [10] A. Hamady, M. Faouzi Zid, T. Jouini, J. Solid State Chem. 113 (1994) 120.
- [11] M.-R. Li, W. Liu, H.-H. Chen, X.-X. Yang, Z.-B. Wei, D.-H. Cao, M. Gu, J.-T. Zhao, Eur. J. Inorg. Chem. (2005) 4693.
- [12] J.L. Yuan, X.J. Wang, D.B. Xiong, C.J. Duan, J.T. Zhao, Y.B. Fu, G.B. Zhang, C.S. Shi, J. Lumin. 126 (2007) 130.
- [13] C.W.E. van Eijk, Nucl. Instrum. Meth. A 460 (2001) 1.
- [14] H.N. Ng, C. Calvo, Can. J. Chem. 51 (1973) 2613.
- [15] A. Akrim, D. Zambon, J. Metin, J.C. Cousseins, Eur. J. Inorg. Chem. 30 (1993) 483.
- [16] J. Rodriguez-Carvajal, FULLPROF version July 2006, ILL, unpublished.
- [17] M. Gabelica-Robert, M. Goreaud, P. Labbe, B. Raweau, J. Solid State Chem. 45 (1982) 389.
- [18] H. Hong, Mater. Res. Bull. 11 (1976) 173.
- [19] A. Bessiere, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, H.U. Gudel, C. de Mello Donega, A. Meijerink, Nucl. Instrum. Meth. A 537 (2005) 22.
- [20] A. Lempicki, E. Berman, A.J. Wojtowicz, M. Balcerzyk, IEEE Trans. Nucl. Sci. 40 (1993) 384.
- [21] S.E. Derenzo, W.W. Moses, J.L. Cahoon, R.C.C. Perera, IEEE Trans. Nucl. Sci. 37 (1990) 203.
- [22] A. Lempicki, A.J. Wojtowicz, J. Lumin. 60-61 (1994) 942.
- [23] P.A. Rodnyi, Radiat. Meas. 33 (2001) 605.